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Abstract An essentially disconnected generalized polyomino graph is defined as a
generalized polyomino graph with some perfect matchings and forbidden edges. The
number of perfect matchings of a generalized polyomino graph G is the product of
the number of perfect matchings of each elementary component in G. In this paper,
we obtain a lower bound on the number of elementary components of essentially
disconnected generalized polyomino graphs.
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1 Introduction

A polyomino graph [1,19], also called chessboards [3] or square-cell configurations
(lattice animals) [7,8,18], is a finite 2-connected geometric graph in which every
interior face is bounded by a regular square of side length 1 (i.e. called a cell). Polyo-
mino graphs have attracted some mathematicians’ considerable attentions, for many
interesting combinatorial subjects are yielded from them, such as hypergraphs [1],
domination problem [3,6], rook polyominal [13], etc. A generalized polyomino graph
G [5] can be obtained from a polyomino graph H by deleting all the vertices and edges
in the interior of a group of pairwise disjoint cycles C1, C2, . . . , Ck (k � 1) which
are inside H , i.e. Ci (i = 1, 2, . . . , k) contains no vertex on the perimeter of H . These
cycles are called the inner perimeters of G, while the perimeter C0 of H is called
the outer perimeter of G. For a generalized polyomino graph G, the characteristic
graph C(G) is defined as the graph whose vertex set is the set of the interior face of
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H G

Fig. 1 A polyomino graph H and a generalized polyomino graph G from H

G bounded by a square of side length 1, and two vertices of C(G) are adjacent iff
the corresponding interior faces have an edge in common. A generalized polyomino
graph G and a polyomino graph H from which G is obtained are given in Fig. 1.

A perfect matching of a graph G is a set of independent edges of G covering all
vertices of G. An edge of a polyomino graph or a generalized polyomino graph G
with at least one perfect matching is said to be a forbidden single (double) edge if it
belongs to none (all) of the perfect matchings of G and allowed otherwise. An edge is
said to be a forbidden edge if it is either a forbidden single edge or a forbidden double
edge. A polyomino graph or generalized polyomino graph G is said to be elementary
if it has no forbidden edge. Otherwise, it is said to be essentially disconnected [4].

The perfect matchings of polyomino graphs and generalized polyomino graphs have
been studied widely. For polyomino graphs, the perfect matching problem is closely
related to the dimer problem in crystal physics [9,10,14]. John et al. [9] and Sachs
[16] also considered the enumeration of its perfect matchings. In addition, Berge et al.
[1] studied the generalized covering problem for polyomino graphs by introducing hy-
pergraphs. Zhang [19] gave the necessary and sufficient conditions to have a perfect
matching. For a generalized polyomino graph, it is not difficult to see that a domino
tiling of it corresponds to a perfect matching of its characteristic graph. Thus some
domino tiling problems are reduced to the enumeration problem of perfect matchings
of generalized polyomino graphs. In [15] several explicit expressions for the number
of perfect matchings for some special types of generalized polyomino graphs were
given. Chen [5] also obtained the necessary and sufficient conditions to have a perfect
matching.

But it is well known that the enumerating of perfect matchings of a graph is NP-hard
[11]. Note that the number of perfect matchings of a polyomino graph or generalized
polyomino graph G is the product of the number of perfect matchings of each elemen-
tary component in G [5,19]. A natural problem is how many elementary components a
graph can be decomposed into. That is why we consider the lower bound on the num-
ber of elementary components of polyomino graphs or generalized polyomino graphs.
For polyomino graphs, Wei and Ke [17] studied that an essentially disconnected poly-
omino graph has at least two elementary components and if one of its elementary
components is an unit square, then it has at least three elementary components. Fur-
thermore, Liu and Chen [12] proved that an essentially disconnected polyomino graph
with an elementary component without vertex on the perimeter has at least five ele-
mentary components and constructed essentially disconnected polyomino graphs with
2 or 3 elementary components.
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For essentially disconnected generalized polyomino graphs, no more results about
the structure feature have been known except that there are necessary and sufficient
conditions to have a perfect matching [5]. In this paper, we concentrate ourselves on
essentially disconnected generalized polyomino graphs and obtain a lower bound on
the number of their elementary components. As an application, we can decompose an
essentially disconnected generalized polyomino graph G into a number of elementary
components such that the number of perfect matchings of G is equal to the product of
those of its components.

2 Definitions and notations

Let G be a generalized polyomino graph with perimeters C0, C1, . . . , Ck , where C0
is the outer perimeter of G (i.e. the perimeter of the corresponding polyomino graph),
and C1, C2, . . . , Ck is the inner perimeters of G (i.e. the perimeters of the holes). The
following concept of special edge cut and standard combination plays an important
role in our investigations.

Definition 2.1 ([5]) A straight line segment P1 P2 is called a cut segment from Ci to
C j if

1. P1 is the center of an edge e1 on some perimeter Ci and P2 is the center of an
edge e2 on some perimeter C j ;

2. P1 P2 and all edges of G form an angle of π/4;
3. any point of P1 P2 is either an interior or a perimeter point of some square of G.

Definition 2.2 ([5]) A broken line segment P1 Q P2 is called a generalized cut segment
(g-cut segment) from Ci to C j if

1. P1 is the center of an edge e1 on some perimeter Ci and P2 is the center of an
edge e2 on some perimeter C j ;

2. P1 Q and P2 Q form an angle of π/2;
3. Q is the center of some edge e which is the bisector of the right angle � P1 Q P2;
4. any point of P1 Q P2 is either an interior or a perimeter point of some square of G.

Definition 2.3 ([5]) A special cut segment is either a cut segment or a g-cut segment.
A special edge cut R is the set of edges of G intersected by a special cut segment from
Ci to C j , denoted by Ei j .

The cut segments P1a P2a, P1b P2b, P1c P2c, P1e P2e and g-cut segment P1d Qd P2d

are shown as in Fig. 2.
It is obvious that two special edge cuts are disjoint if their corresponding special cut

segments are disjoint. A special edge cut Ei j is said to be of type I if i = j ; otherwise,
Ei j is said to be of type II.

It is easy to check that generalized polyomino graphs are bipartite graph. Thus they
are 2-colorable. In the following, we make the convention that all the vertices of a
generalized polyomino graph G in question have been colored black or white such
that any two adjacent vertices of G have different colors. We denote the sets of white
and black vertices of G by W (G) and B(G), respectively. Let E be a subset of the
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Fig. 2 A generalized polyomino graph G and five special edge cuts in G

edge set of G.G − E is the subgraph of G obtained by deleting all the edges of E .
It is evident that G − E has exactly two components if E is a special edge cut of
type I , and the end vertices of the edges of E have the same color when they lie in the
same component of G − E . If E is a special edge cut of type I I , then G − E is still
connected.

Definition 2.4 Suppose that Ei1i2 , Ei2i3 , . . . , Eit−1it , Eit i1 are t disjoint special edge
cuts of type I I , where Ei j il corresponds to a special cut segment from Ci j to Cil and
iu �= iv if u �= v. Let E = Ei1i2 ∪ Ei2i3 ∪· · ·∪ Eit−1it ∪ Eit i1 .E is said to be a standard
combination if the end vertices of the edges of E have the same color when they lie
in the same component of G − E .

In Fig. 2, let E∗
01 be the special edge cut corresponding to the special cut segment

P1b P2b, E01 the special edge cut corresponding to the special cut segment P1c P2c, E12
the special edge cut corresponding to the special edge cut segment P1d Qd P2d , E20
the special edge cut corresponding to the special edge cut segment P1e P2e. Then
E = E01 ∪ E12 ∪ E20 is a standard combination. While the two special edge cuts
E12, E20 and E∗

01 do not constitute a standard combination.
In [5], a necessary and sufficient condition for a generalized polyomino graph with

some perfect matchings to be essentially disconnected was given.

Theorem 2.5 ([5]) Let G be a generalized polyomino graph with at least one perfect
matching, C0 the outer perimeter of G, C1, C2, . . . , Ck (k � 1) the perimeters of
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holes of G. Then G is essentially disconnected if and only if G possesses a special
edge cut E1 of type I , or a standard combination E2 of type I I , satisfying

i. |B(G1)| = |W (G1)| and |B(G2)| = |W (G2)|, where Gi (i = 1, 2) are the two
components of G − E1 or G − E2;

ii. all the edges of E1 or E2 are forbidden single edges.

The above Theorem implies that for an essentially disconnected generalized polyo-
mino graph G, deleting the forbidden edges which form a special edge cut E1 of type
I or a standard combination E2 of type I I , the subgraph G − E1 or G − E2 is not
connected and has at least two connected components.

3 Main results

In this section we prove that for each component Gi (i = 1, 2) of G − E1 or G − E2
which are obtained from Theorem 2.5, there exist some allowed edges, which implies
that Gi is elementary or contains an elementary subgraph.

Let G be a generalized polyomino graph, V be a set of vertices of G.G/V denotes
the subgraph obtained by deleting all the vertices of V together with their incident
edges. For a perfect matching M of G, an M-alternating cycle is a cycle whose edges
are alternate in M and E(G) − M , where E(G) is the edge set of G.

Lemma 3.1 Let G be a generalized polyomino graph, C0 the outer perimeter of
G, C1, C2, . . . , Ck the inner perimeters of G. Let v1, . . . , vt be t vertices simulta-
neously on some perimeter Cx of G, V = {v1, . . . , vt }. Suppose that in G/V , the
perimeter Cx of G is broken into t segments with even lengths (i.e. odd vertices). If
G/V has a perfect matching M, then G/V has an M-alternating cycle.

Proof Let G be a generalized polyomino graph with n vertices, m edges, k holes and
s squares. We may further assume that G has p external edges (i.e. the edges lying
on the perimeter of G), then G has m − p internal edges (i.e. the edges not lying
on the perimeter of G). Since each internal edge belongs to two squares, we have
4s = 2(m − p) + p, i.e.

m = 2s + p

2
. (1)

By Euler’s formula [2] which says that for a connected plane graph, the number of
vertices plus the number of faces is equal to the number of edges plus two, we have
n + (s + k + 1) = m + 2, i.e.

n − m + s = 1 − k. (2)

which together with (1) yields

n − s − p

2
= 1 − k. (3)
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On the other hand, suppose that the perfect matching M of G/V contains r external
edges of G and hence has n−t

2 − r internal edges of G. By the assumption, in G/V
the perimeter Cx of G is broken into t segments each of which contains even number
edges. Let ri be the number of edges on perimeter Ci which are contained in M, pi the
number of edges on perimeter Ci . Therefore, we have: r = r0 +r1 +r2 +· · ·+rk, p =
p0 + p1 + p2 + · · · + pk, rx ≤ px −2t

2 and r j ≤ p j
2 ( j �= x, 0 ≤ j ≤ k). If some

of the perimeters C0, C1, . . . , Ck is an M-alternating cycle, then there is nothing to
prove. Now suppose that none of the perimeters C0, C1, . . . , Ck is an M-alternating
cycle. Thus, we have rx ≤ px −2t

2 and r j ≤ p j
2 − 1 ( j �= x, 0 ≤ j ≤ k). Hence,

r = r0 + r1 + r2 + · · · + rk ≤ px − 2t

2
+

∑

j �=x

( p j

2
− 1

)
=

k∑

j=0

( p j

2

)
− t − k = p

2
− s − k,

i.e.

r ≤ p

2
− s − k (4)

If none of the squares of G/V is an M-alternating cycle, then at most one edge of
each square of G belongs to M . Hence we have s ≥ r + 2( n−t

2 − r), i.e.

s ≥ n − r − t. (5)

Bearing in mind the inequality (4), we obtain: s � n − p
2 + k, i.e.

n − s − p

2
� −k. (6)

Formula (6) is evidently in contradiction with formula (3). The contradiction implies
that the assumption about the non-existence of M-alternating cycle which is a square
is false. The proof is completed. ��

Analogous to the proof of Lemma 3.1, one can easily obtain the same result to
polyomino graphs. In other words, if one puts k = 0 in the proof of Lemma 3.1, one
can reach the conclusion for polyomino graphs.

Lemma 3.2 ([17]) Let G be a polyomino graph, C the perimeter of G, v1, . . . , vt

be t vertices on the perimeter C of G, V = {v1, . . . , vt }. Suppose that in G/V , the
perimeter C of G is broken into t segments with even lengths (i.e. odd vertices). If
G/V has a perfect matching M, then G/V has an M-alternating cycle.

In the following, we introduce a special class of graphs called non-complete general-
ized polyomino graph. A non-complete generalized polyomino graph G is a subgraph
of a generalized polyomino graph H and has at least one edge not belonging to any
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(a) (b)

Fig. 3 Two non-complete generalized polyomino graphs

square of G. Two non-complete generalized polyomino graphs G are shown as in
Fig. 3.

Lemma 3.3 Let G be a non-complete generalized polyomino graph, C0 the outer
perimeter of G, C1, C2, . . . , Ck the inner perimeters of G. Let v1, . . . , vt be t vertices
simultaneously on some perimeter Cx of G, V = {v1, . . . , vt }. Suppose that in G/V ,
the perimeter Cx of G is broken into t segments with even lengths (i.e. odd vertices).
If G/V has a perfect matching M, then G/V has an M-alternating cycle.

The proof of the above conclusion is fully analogous to that of Lemma 3.1. Hence
we omit the details.

By Lemmas 3.1–3.3, if we put V = ∅, i.e. t = 0 in the proof of the Lemmas, we
immediately have the following result.

Lemma 3.4 Let G be a polyomino graph, or a generalized polyomino graph, or a
non-complete generalized polyomino graph with at least one perfect matching, then
G has an M-alternating cycle.

We now immediately obtain the following main result.

Theorem 3.5 If G is an essentially disconnected generalized polyomino graph, then
the subgraph obtained from G by deleting all the forbidden single edges and all the
end vertices of the forbidden double edges is disconnected.

Proof By Theorem 2.5, G has a special edge cut E1 of type I or a standard com-
bination E2 of type I I such that the edges of E1 or E2 are forbidden single edges.
Then after deleting all the forbidden single edges of E1 or E2, G has at least two
connected components G1 and G2. Each of them may be a component with or without
some pendent edges. In the following, we prove that each component Gi (i = 1, 2) has
some allowed edges, i.e. Gi has an elementary component which is also an elementary
component of G. We distinguish two cases:

Case1. Suppose that Gi has no pendent edge. Then Gi is itself a polyomino graph,
or a generalized polyomino graph, or a non-complete generalized polyomino
graph. Thus by Lemma 3.4, Gi has some allowed edges (note that all the edges
on an M-alternating cycle are allowed edges). Thus, after deleting all the for-
bidden single edges and all the end vertices of the forbidden double edges, Gi
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has a component consisting of allowed edges, i.e. an elementary component.
It is clear that this elementary component is also an elementary component
of G and is an elementary polyomino graph or an elementary generalized
polyomino graph, or a non-complete generalized polyomino graph.

Case 2. Suppose that Gi has some pendent edges, say ui jvi j ( j = 1, 2, . . . , s), where
ui j is a vertex of degree 1 in Gi . Since G is a generalized polyomino graph
with perfect matchings and all the edges of E1 or E2 are forbidden single
edges, all the pendent edges ui jvi j ( j = 1, 2, . . . , s) of Gi are forbidden dou-
ble edges. By deleting all the pendent edges ui jvi j ( j = 1, 2, . . . , s) together
with the end vertices ui j , we obtain a polyomino graph, or a generalized
polyomino graph, or a non-complete generalized polyomino graph G∗

i . Put
Vi = {vi1, vi2, . . . , vis}. Then G∗

i /Vi has a perfect matching Mi −{ui j , vi j },
where Mi is a perfect matching of Gi . Keep in mind the definition of special
edge cut of type I and the standard combination of type I I , one can check that
Vi satisfies the conditions in Lemmas 3.1–3.4. Therefore, G∗

i /Vi has some
allowed edges. Consequently, G∗

i /Vi has at least an elementary component
which is also an elementary component of G and is an elementary polyomi-
no graph or an elementary generalized polyomino graph, or an elementary
non-complete generalized polyomino graph.

Therefore, we come to the conclusion that G has at least two elementary com-
ponents, one from G1, and the other from G2. Each of them may be an elementary
polyomino graph, or an elementary generalized polyomino graph, or an elementary
non-complete generalized polyomino graph. ��
Corollary 3.6 Let G be an essentially disconnected generalized polyomino graph.
Then G has at least two elementary components.

As Fig. 4 shows that one generalized polyomino graph with two elementary com-
ponents and the other with five elementary components, where each elementary com-
ponent is shaded.

(a) (b)

Fig. 4 Two generalized polyomino graphs with two and five elementary components
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If G is an essentially disconnected generalized polyomino graph, we can delete all
the forbidden edges of G and find that the remained subgraph of G consists of isolated
edges and subpolyomino graphs which are elementary components. Therefore, we
have the following decomposition theorem.

Theorem 3.7 ([5]) If G is an essentially disconnected generalized polyomino graph.
Denote by �(G) the number of perfect matchings of G. Then

�(G) =
t∏

i=1

�(Gi )

where �(Gi )(i = 1, 2, . . . , t) are the elementary components of G.

Remark 3.8 Let G be an essentially disconnected generalized polyomino graph. If
the number of perfect matchings of each elementary component of G has been given,
then one can easily obtain the number of perfect matchings of G by Corollary 3.6 and
Theorem 3.7.

Acknowledgments The project was supported financially by Science Foundation for the Education
Department of Fujian Province (JA10224).

References

1. C. Berge, C.C. Chen, V. Chvatal, C.S. Soaw, Combinatorial properties of polyominoes. Combinator-
ics 1, 217–224 (1981)

2. J.A. Bondy, U.S. Murty, Graph Theory and its Applications (The Macmillan Press, London, 1976)
3. E.J. Cockayne, Chessboard domination problems. Discrete Math. 86, 13–20 (1990)
4. S.J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons (Springer, Berlin, 1988)
5. R.S. Chen, Perfect matchings of generalized polyomino graphs. Graphs Combin. 21, 515–529 (2005)
6. C.M. Grinstead, B. Hahne, D. Van Stone, On the queen domination problem. Discret. Math. 86, 21–

26 (1990)
7. F. Harary, P.G. Mezey, Cell-shedding transformations, equivalence relations, and similarity measures

for square-cell configurations. Int. Quant. Chem. 62(4), 353–361 (1997)
8. F. Harary, P.G. Mezey, The diet transform of lattice patterns, equivalence relations, and similarity

measures. Mol. Eng. 6(4), 415–416 (1996)
9. P. John, H. Sachs, H. Zerntic, Counting perfect matchings in polyominoes with applications to the

dimer problem. Zastosowania Matemetyki (Appl. Math.) 19, 465–477 (1987)
10. P.W. Kasteleyn, The statistics of dimer on a lattice I: the number of dimer arrangement on a quadratic

lattice. Physica 27, 1209–1225 (1961)
11. L. Lovász, M.D. Plummer, Matching Theory (Elsevier Science, Amsterdam, 1986)
12. Z.F. Liu, R.S. Chen, The structure character of essentially disconnected polyomino graphs. J. Math.

Chem. 49(2), 489–506 (2011)
13. A. Motoyama, H. Hosoya, King and domino polyominals for polyomino graphs. J. Math.

Phys. 18, 1485–1490 (1997)
14. M.D. Plummer, Matching Theory-a sampler: from Dénes Konig to the present. Discret. Math. 100,

177–219 (1992)
15. J. Propp, Enumeration of matchings: problems and progress, vol. 38 (MSRI Publications, Cambridge

University Press, Cambridge, 1999), pp. 255-291
16. H. Sachs, Counting perfect matchings in lattice graphs, in Topics in Combinatorics and Graph Theory

(Physica-Verlag 1990), pp. 577-584.
17. S.L. Wei, X.L. Ke, Elementary components of essentially disconnected polyomino graphs. J. Math.

Chem. 47(1), 496–504 (2010)

123



140 J Math Chem (2012) 50:131–140

18. P.D. Walker, P.G. Mezey, Representation of square-cell configurations in the complex plane: Tools
for the characterization of molecular monolayers and cross sections of molecular surfaces. Int. Quant.
Chem. 43(3), 375–392 (1992)

19. H.P. Zhang, F.J. Zhang, Perfect matchings of polyomino graphs. Graphs Combin. 13, 295–304 (1997)

123


	A lower bound on the number of elementary components of essentially disconnected generalized polyomino graphs
	Abstract
	1 Introduction
	2 Definitions and notations
	3 Main results
	Acknowledgments
	References


